Conditional Deduction Under Uncertainty
نویسندگان
چکیده
Conditional deduction in binary logic basically consists of deriving new statements from an existing set of statements and conditional rules. Modus Ponens, which is the classical example of a conditional deduction rule, expresses a conditional relationship between an antecedent and a consequent. A generalisation of Modus Ponens to probabilities in the form of probabilistic conditional inference is also well known. This paper describes a method for conditional deduction with beliefs which is a generalisation of probabilistic conditional inference and Modus Ponens. Meaningful conditional deduction requires a degree of relevance between the antecedent and the consequent, and this relevance can be explicitly expressed and measured with our method. Our belief representation has the advantage that it is possible to represent partial ignorance regarding the truth of statements, and is therefore suitable to model typical real life situations. Conditional deduction with beliefs thereby allows partial ignorance to be included in the analysis and deduction of statements and hypothesis.
منابع مشابه
Inverting Conditional Opinions in Subjective Logic
Subjective Logic has operators for conditional deduction and conditional abduction where subjective opinions are input arguments. With these operators traditional Bayesian reasoning can be generalised from taking only probabilistic arguments to also taking opinions as arguments, thereby allowing Bayesian modeling of situations affected by uncertainty and incomplete information. Conditional dedu...
متن کاملApplication of Sequential Gaussian Conditional Simulation to Underground Mine Design Under Grade Uncertainty
In mining projects, all uncertainties associated with a project must be considered to determine the feasibility study. Grade uncertainty is one of the major components of technical uncertainty that affects the variability of the project. Geostatistical simulation, as a reliable approach, is the most widely used method to quantify risk analysis to overcome the drawbacks of the estimation methods...
متن کاملCorrigendum: Bayesian reasoning with ifs and ands and ors
The Bayesian approach to the psychology of reasoning generalizes binary logic, extending the binary concept of consistency to that of coherence, and allowing the study of deductive reasoning from uncertain premises. Studies in judgment and decision making have found that people's probability judgments can fail to be coherent. We investigated people's coherence further for judgments about conjun...
متن کاملA Complex Design of the Integrated Forward-Reverse Logistics Network under Uncertainty
Design of a logistics network in proper way provides a proper platform for efficient and effective supply chain management. This paper studies a multi-period, multi echelon and multi-product integrated forward-reverse logistics network under uncertainty. First, an efficient complex mixed-integer linear programming (MILP) model by considering some real-world assumptions is developed for the inte...
متن کاملProbabilistic Deduction with Conditional Constraints over Basic Events
We study the problem of probabilistic deduction with conditional constraints over basic events. We show that globally complete probabilistic deduction with conditional constraints over basic events is NP-hard. We then concentrate on the special case of probabilistic deduction in conditional constraint trees. We elaborate very eecient techniques for globally complete probabilistic deduction. In ...
متن کامل